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Scaling of fluctuation for directed polymers with random
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Abstract. Using a finite size scaling form for reunion probability, we show numerically the
existence of a binding–unbinding transition for directed polymers with random interaction. The
cases studied are (A1) two chains in 1+ 1 dimensions, (A2) two chains in 2+ 1 dimensions
and (B) three chains in 1+ 1 dimensions. A similar finite size scaling form for fluctuation
establishes a disorder-induced transition with identical exponents for cases A2 and B. The length
scale exponents in all the three cases are in agreement with previous exact renormalization-group
results.

Disorder is often found to give rise to complicated but rich phenomena in nature, an
excellent example of which is the existence of the spin–glass transition and the spin–glass
phase [1]. Needless to say, one has to look beyond the reality, and study simpler models
that retain only the essential features believed to be responsible for such new events [1].
Directed polymers+ (DP) in random media [2–4] or with random interactions [5, 6] provide
a fruitful basis in this regard because of its inherent simplicity. By virtue of mappings to
nonlinear, noisy surface growth equations [2, 7], and other applications,DPs have become
relevant in a broader context. A crucial result established for directed polymers in random
media [3] is the existence of a strong disorder ‘spin–glass’-type phase atd = 1, and
a lower critical dimension,d = 2, beyond which a disorder-induced transition exists.
For the random interaction case there is also a weak to strong disorder transition [5–7].
Directed polymers are also simpler than the more complex problem of undirected polymers
in random medium [8, 9]. Similarly, many heteropolymer (undirected) problems, especially
biopolymers, require random interaction [10], andDPs with random interaction quite often
serve as a simpler solvable limit [11].

In this letter, we concentrate on the disorder-induced transition in directed polymers with
random interaction (RANI), to explore the scaling behaviour of fluctuation due to quenched
disorder. The essential feature here is the mutual short-range interaction which is random,
as might arise when there is a random charge distribution along the length of the polymer. A
different version of our model appears in the context of wetting phenomena in the presence
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of disorder atd = 1 [12]. For theRANI model, unlike the random medium problem, an
exact renormalization group (RG) can be implemented under certain conditions [5, 6]. We
would like to verify the length scale exponents obtained from the perturbativeRG. This
verification is essential for further applicability ofRG for the disorder problem to ensure
that there are no non-perturbative effects. For comparison, one might point out the situation
for the random medium problem. For the weak to strong disorder transition,RG [13, 14]
predicts a length scale exponent 2/(d − 2) for d > 2 while numerical calculations [15, 16]
for d = 3 gave numbers as different as 4.2 and 6.7. We establish here that, unlike the
random medium case, theRANI model is better controlled.

For generality let us start with a system ofm polymers each of lengthN with a random
m body (mth-order multicritical) interaction. The model in a continuum formulation is
given by

Hm = 1

2

i=m∑
i=1

∫ N

0

(
∂ri (z)

∂z

)2

+
∫ N

0
dz vm(1 + b(z))

m∏
i=2

δ(ri (z) − ri−1(z)) (1)

whereri (z) denotes thed-dimensional transverse spatial coordinate of theith polymer at
contour lengthz. The first term denotes the elastic energy part of the Gaussian chains and
the second term denotes the mutual random contact interaction among the chains. Note that
the interaction is always at equal length with a random partb(z) in the coupling constant.
The randomness is dependent only on the lengthz at which the interaction occurs. This
is what one expects for a random monomer distribution along the backbone. More general
randomness can arise [17] but will not be considered here†. In the following analysis we
shall consider a binary distribution for the disorder with equal probability.

We study this system (actually, a discrete version of this) numerically by generating the
partition function recursively along the length of the chain. The cases considered are (A1)
the two-chain problem (m = 2) for d = 1, (A2) two chains ind = 2, and (B) three chains
with three-body interaction (m = 3) for d = 1. The reason for choosing the last two cases,
as explained below, is thatd = 2 (d = 1) is the marginal case for the two-body (three-body)
interaction problem. Instead of analysing large systems as has been done in [7] form = 2
andd = 1, we use finite size scaling to calculate the exponents for various cases.

The pure counterpart of the disordered model, equation (1) is at present well understood
through the renormalization-group analysis [19, 20] or by solving the Schrödinger-type
equations for the two-body problem [21]. An exactRG shows that there is a bound state
for any small attraction ford < dc = d

pure
m = 2/(m − 1). This binding–unbinding

transition is seen over a characteristic length scaleξ‖ ∼ |vm|−ν , with ν = 2/|εm|, and
εm = (m − 1)(d − d

pure
m ). The length scaleξ‖ is a measure of the average separation

between two contacts along the chain. For repulsive energy, the phase is governed by a
stable fixed point where the corresponding scale-invariant theory is described by an infinite
strength of the repulsion or a fermion-like behaviour. Ford > d

pure
m , a threshold for the

strength of the attraction is required for the bound state while for smaller attraction or
any repulsion, the chains are asymptotically free. Exactly atd = d

pure
m , the system is at

its marginal dimension where the repelling chains are again like free Gaussian chains but
with certain log corrections, and the characteristic length scale diverges exponentially as the
transition point is approached.

The random system exhibits certain new features. The fact that the disorder becomes
marginally relevant atd = 1 for the two-body problem was observed in the context of the

† In fact, equation (1), for two-body interaction, is the random version of the Hamiltonian used to study the flux
lattice melting problem in highTc superconductors [18]. In a simple picture, the effects of impurities can be
thought of as producing random interactions among the flux lines.
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disordered wetting phenomena [12]. The exact renormalization-group (RG) analysis [5, 6]
reveals, besides establishing this marginal relevance, that there is a disorder induced phase
transition beyond the critical dimensionddis

m = 1/(m − 1). The length scale exponent for
this transition is found to beξdis

‖ ∼ (1−1dis
c )−νr with νr = 2/(m−1)(d −ddis

m ), 1 being the
variance of disorder. The critical value of disorder is1dis

c . Exactly at the critical dimension
ddis

m , any small disorder leads to a strong disorder behaviour over a characteristic length
scaleξdis

‖ ∼ exp(1/1). However, in none of the above cases was it possible to investigate
the strong disorder limit because of the absence of any perturbative strong coupling fixed
point. To investigate further, a real spaceRG has been performed on the hierarchical lattice
that brought out several new features [22]. A dynamic renormalization-group approach also
recovered these results and furthermore showed that there is no anomalous exponent for the
free energy [7]. This suggests that the effect of disorder is reflected in the various cumulants
of the partition functions that characterize the phases and phase transitions [5, 6].

For the pure system, the unbound phase is characterized by the reunion partition function
ZR,m(N) which is the sum of the Boltzmann weights of all paths corresponding to the
meeting ofm chains at any point in (transverse) space at lengthN , the other end being tied
together at the origin. Similarly, one can define a survival partition functionZS,m(N) for the
chains tied at the origin at one end but located anywhere at the other end. The ratio of the
two defines the probability of reunion. It has been shown that the reunion and the survival
partition functions, and hence the probability, acquire anomalous scaling at the stable fixed
point at d = 1 [23, 24]. DetailedRG analysis yields thed = 1 exact (vicious walker)
result thatZR,2(N) ∼ N−3/2, and predicts that for marginal casesd = d

pure
m , the m chain

reunion withm-body interaction has the formZR,m(N) ∼ N−1(ln N)−2 [24, 25]. These
cases include the two chain problem atd = 2 and three chain atd = 1. The identical log
correction, originating from the marginality of the interaction at the appropriate dimensions,
is an example of ‘grand universality’ for the directed polymer multicritical points [20]. This
feature is preserved in the random case also.

For the pure versions of cases A1, A2 and B, the unbinding critical point is atvm = 0,
for which the chains are free. Therefore, around the transition, one can write a finite size
scaling form

N(m−1)d/2ZR,m(N) = F(x) (2)

wherex = |vm|N1/ν for two chains in one dimension andx = |vm| ln N for m = d = 2 and
m = 3, d = 1. A similar scaling form can also be written for the probability of reunion. A
typical case is shown in figure 1.

The partition function for the chains is generated recursively in their length. For the
two-chain problem, since the randomness is only along thez direction, only the relative
chain is considered. The centre of mass is a free Gaussian chain. This transformation is
not possible for three chains and we consider the full partition function.

For two chains with pair interaction, the recursion relation is given by

Z(r, t + 1) = e−η

[
d∑

i=1

{Z(r + êi , t) + Z(r − êi , t)} + pZ(r, t)

]
/(2d + p) (3a)

with êi as unit vectors in theith direction, andr denoting the position vector for the end
point. A weight factorp has been put in for extra weightage of the relative chain. We have
setp equal to 4. The random energyη = vm ± 1, with equal probability, wheneverr is
zero. In this relative coordinate,ZR,2(N) = Z(, N), and ZS,2(N) = ∑

r Z(r, N). For
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Figure 1. Data collapse for pure and random cases,
two chains in 2+ 1 dimensions. For the pure case,
the y-axis isNZR,2(N) while for the random case
it is N〈ZR,2(N)〉. The x axis is |v2| logN for the
pure case but(1 − 1c) logN for the random case.
The legend shows the values ofv2 for the random
case.

three chains ind = 1,

Z(x, y, z, t + 1) = e−η

[ ∑
i,j,k=±1

Z(x + i, y + j, z + k, t)

]
/8 (3b)

where the Boltzmann factor for the randomness contributes only forx = y = z, i.e. only
when three chains meet together. All chains start at origin att = 0. For the three-chain
case,ZR,3(N) = ∑

x Z(x, x, x, N), andZS,3(N) = ∑
x,y,z Z(x, y, z, N).

The randomness reduces the strength of the interaction. The effective interactionvm,
determined by

exp(−v̄m) = [exp(−vm − 1) + exp(−vm + 1)]/2 (4)

controls the binding–unbinding transition. Since for all the three cases the pure binding–
unbinding transition takes place at zero energy (i.e. Boltzmann factor= 1), the transition
point for a fixedvm is given by

vm = ln cosh1c . (5)

As a result a bound state can form even forvm > 0. In other words, a thermal unbinding is
possible because randomness produces attractive pockets. The scaling of equation (2) can
be rewritten asN〈ZR,m(N)〉 = F(x), where, for cases A2 and B,x = (1 − 1c) ln N for a
given vm with 1c satisfying equation (5).

We computed the average reunion and survival partition functions, and also the
average probability of reunion where the probability for a given realization is defined as
P(N) = ZR,m(N)/ZS,m(N). The main distinction is that while the first two quantities may
be considered as annealed averaging, the last one is strictly a quenched averaged quantity.
For a given realization, the recursion relation gives exact values (up to the machine precision)
of the partitions functions. An averaging over the disorder is done by considering around
500 samples. The lattice size is chosen such that the average transverse size of a polymer
(∼ N1/2) does not exceed it (to avoid boundary effects).
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For a fixed strength ofv2, we plot, in figure 1, the data for different1, with the scaled
variables〈ZR,m(N)〉N as(1 − 1c) ln N . This plot shows a nice data collapse on the pure
curve with 1c chosen as per equation (5) for two different values ofv2. It verifies the
exponential divergence of the length scale near the transition. We have also checked similar
data collapse for the other cases and various values ofvm. The main inference we draw from
this is that for the average chains in the presence of disorder, the nature of the transition
remains the same as the pure system except for a shift in the critical value. This also serves
as a check on the simulation.

With the above knowledge, we consider a particular value1 and force the system to
be strictly at the transition point of unbinding by choosing appropriatevm. The specific
quantity we calculate is the fluctuation in the reunion partition function or the fluctuation in
the probability of reunion. The raw data for the cumulant〈P 2〉c have been plotted withN
for various1 with correspondingvm determined by equation (5). In case there is a disorder
induced transition we expect the following scaling to hold good close to this critical point
1dis

c ,

〈P 2〉c = N−φG((1 − 1dis
c )N1/νr ) (6)

where, according to theRG prediction of the divergence of the length scale near the transition
point, νr = 1 for cases A2 and B. If we believe in Grand Universality [5], the exponentφ

should also be the same for these two cases. The plot with〈P 2〉cNφ versusN(1 − 1dis
c )

indeed shows a data collapse for a small value of1dis
c < 0.05 andφ = 2. The two cases, A2

and B, for which the pure interaction is marginal, are shown in figures 2 and 3. Numerical
accuracy forbids simulations for very small values of1 and therefore the weak disorder
phase cannot be probed in our simulation.

Figure 4 shows the data collapse for the case of two chains atd = 1. Since the disorder
is expected to be always marginally relevant, the scaled variables for data collapse, from
RG [5, 6], would be1 logN . We obtain a data collapse forφ = 0.57±0.03. This verifies the
exponential divergence of the length scale for the situation where the disorder is marginal.

To conclude, we have shown that randomly interacting directed polymers undergo a
binding–unbinding transition and, at the critical point, the fluctuation in the reunion partition

Figure 2. Data collapse for
fluctuation of the reunion
partition function. This is
for two chains in 2+ 1
dimensions. The exponent
φ = 2 and νr = 1. The
inset shows the fluctuations
for various 1 and length
scales.
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Figure 3. Data collapse for reunion probability for three chains in 1+ 1 dimensions. The
exponents areφ = 2 andνr = 1. The inset shows the variance for various1 and length scales.

Figure 4. Data collapse for fluctuation of the
reunion probability for two chains in 1+ 1
dimensions.φ = 0.57 ± 0.03. The inset shows
the variance as in figures 2 and 3.

function or the probability of reunion show scaling behaviour with length scale exponents
that agree withRG prediction. A finite size scaling form, verified for the pure case, has been
used to study the unbinding transition.. We also obtained the exponents that describe the fluc-
tuation of the second cumulant. This exponentφ is the same for two chains in(2+1) dimen-
sions and three chains in(1+1) dimensions for both of which the pure interaction is marginal.
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