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Abstract. Using a finite size scaling form for reunion probability, we show numerically the
existence of a binding—unbinding transition for directed polymers with random interaction. The
cases studied are (Al) two chains int1l dimensions, (A2) two chains in-2 1 dimensions

and (B) three chains in + 1 dimensions. A similar finite size scaling form for fluctuation
establishes a disorder-induced transition with identical exponents for cases A2 and B. The length
scale exponents in all the three cases are in agreement with previous exact renormalization-group
results.

Disorder is often found to give rise to complicated but rich phenomena in nature, an
excellent example of which is the existence of the spin—glass transition and the spin—glass
phase [1]. Needless to say, one has to look beyond the reality, and study simpler models
that retain only the essential features believed to be responsible for such new events [1].
Directed polymers (Dp) in random media [2—4] or with random interactions [5, 6] provide

a fruitful basis in this regard because of its inherent simplicity. By virtue of mappings to
nonlinear, noisy surface growth equations [2, 7], and other applicatimzd)ave become
relevant in a broader context. A crucial result established for directed polymers in random
media [3] is the existence of a strong disorder ‘spin—glass’-type phagke -at1, and

a lower critical dimensiond = 2, beyond which a disorder-induced transition exists.
For the random interaction case there is also a weak to strong disorder transition [5-7].
Directed polymers are also simpler than the more complex problem of undirected polymers
in random medium [8, 9]. Similarly, many heteropolymer (undirected) problems, especially
biopolymers, require random interaction [10], apek with random interaction quite often
serve as a simpler solvable limit [11].

In this letter, we concentrate on the disorder-induced transition in directed polymers with
random interactionRANI), to explore the scaling behaviour of fluctuation due to quenched
disorder. The essential feature here is the mutual short-range interaction which is random,
as might arise when there is a random charge distribution along the length of the polymer. A
different version of our model appears in the context of wetting phenomena in the presence
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T A (d + 1)-dimensional directed polymer is a random walk stretched in a particular direction with fluctuations
in the transversé-dimensional space.
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of disorder atd = 1 [12]. For theraNI model, unlike the random medium problem, an
exact renormalization grougrG) can be implemented under certain conditions [5, 6]. We
would like to verify the length scale exponents obtained from the perturbativelhis
verification is essential for further applicability &G for the disorder problem to ensure
that there are no non-perturbative effects. For comparison, one might point out the situation
for the random medium problem. For the weak to strong disorder transit®ifi] 3, 14]
predicts a length scale exponent2 — 2) for d > 2 while numerical calculations [15, 16]
for d = 3 gave numbers as different as 4.2 and 6.7. We establish here that, unlike the
random medium case, tieaNI model is better controlled.

For generality let us start with a systemmafpolymers each of lengtlv with a random
m body nth-order multicritical) interaction. The model in a continuum formulation is
given by

. 2
A Y (m@Y " s
Hm=2;/0 ( = )+/0 d v (L+b@) [ [8010) = i) (1)

wherer;(z) denotes the/-dimensional transverse spatial coordinate of itepolymer at
contour lengthy. The first term denotes the elastic energy part of the Gaussian chains and
the second term denotes the mutual random contact interaction among the chains. Note that
the interaction is always at equal length with a random pér} in the coupling constant.

The randomness is dependent only on the lengtt which the interaction occurs. This

is what one expects for a random monomer distribution along the backbone. More general
randomness can arise [17] but will not be considered fhelre the following analysis we

shall consider a binary distribution for the disorder with equal probability.

We study this system (actually, a discrete version of this) numerically by generating the
partition function recursively along the length of the chain. The cases considered are (A1)
the two-chain problemn{ = 2) for d = 1, (A2) two chains ind = 2, and (B) three chains
with three-body interactiom{ = 3) for d = 1. The reason for choosing the last two cases,
as explained below, is that= 2 (d = 1) is the marginal case for the two-body (three-body)
interaction problem. Instead of analysing large systems as has been done infrH@
andd = 1, we use finite size scaling to calculate the exponents for various cases.

The pure counterpart of the disordered model, equation (1) is at present well understood
through the renormalization-group analysis [19, 20] or by solving the (8amger-type
equations for the two-body problem [21]. An exaxt shows that there is a bound state
for any small attraction fod < d. = db"'"® = 2/(m — 1). This binding—unbinding
transition is seen over a characteristic length séale~ |v,|™, with v = 2/]¢,|, and
em = (m — 1)(d — dy'"™). The length scalé, is a measure of the average separation
between two contacts along the chain. For repulsive energy, the phase is governed by a
stable fixed point where the corresponding scale-invariant theory is described by an infinite
strength of the repulsion or a fermion-like behaviour. Hoe dh"® a threshold for the
strength of the attraction is required for the bound state while for smaller attraction or
any repulsion, the chains are asymptotically free. Exactly at dh"'", the system is at
its marginal dimension where the repelling chains are again like free Gaussian chains but
with certain log corrections, and the characteristic length scale diverges exponentially as the
transition point is approached.

The random system exhibits certain new features. The fact that the disorder becomes
marginally relevant at/ = 1 for the two-body problem was observed in the context of the

1 In fact, equation (1), for two-body interaction, is the random version of the Hamiltonian used to study the flux
lattice melting problem in higlf, superconductors [18]. In a simple picture, the effects of impurities can be
thought of as producing random interactions among the flux lines.
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disordered wetting phenomena [12]. The exact renormalization-grapanalysis [5, 6]
reveals, besides establishing this marginal relevance, that there is a disorder induced phase
transition beyond the critical dimensiaff’s = 1/(m — 1). The length scale exponent for

this transition is found to b&f™® ~ (A — A%~ with v, = 2/(m —1)(d —d3*), A being the
variance of disorder. The critical value of disordeni$®. Exactly at the critical dimension

d%s, any small disorder leads to a strong disorder behaviour over a characteristic length
scaleg“"iS ~ exp(1/A). However, in none of the above cases was it possible to investigate
the strong disorder limit because of the absence of any perturbative strong coupling fixed
point. To investigate further, a real spage has been performed on the hierarchical lattice

that brought out several new features [22]. A dynamic renormalization-group approach also
recovered these results and furthermore showed that there is no anomalous exponent for the
free energy [7]. This suggests that the effect of disorder is reflected in the various cumulants
of the partition functions that characterize the phases and phase transitions [5, 6].

For the pure system, the unbound phase is characterized by the reunion partition function
Zr.m(N) which is the sum of the Boltzmann weights of all paths corresponding to the
meeting ofm chains at any point in (transverse) space at lemgtlthe other end being tied
together at the origin. Similarly, one can define a survival partition funcign(N) for the
chains tied at the origin at one end but located anywhere at the other end. The ratio of the
two defines the probability of reunion. It has been shown that the reunion and the survival
partition functions, and hence the probability, acquire anomalous scaling at the stable fixed
point atd = 1 [23, 24]. DetailedrG analysis yields the/ = 1 exact (vicious walker)
result thatZz »(N) ~ N-¥2, and predicts that for marginal casés= 45", the m chain
reunion withm-body interaction has the fornZz ,,(N) ~ N~1(In N)~2 [24, 25]. These
cases include the two chain problemdat 2 and three chain at = 1. The identical log
correction, originating from the marginality of the interaction at the appropriate dimensions,
is an example of ‘grand universality’ for the directed polymer multicritical points [20]. This
feature is preserved in the random case also.

For the pure versions of cases Al, A2 and B, the unbinding critical pointig at O,
for which the chains are free. Therefore, around the transition, one can write a finite size
scaling form

Nm=DdR2Zy (N) = F(x) 2

wherex = |v,,|NY" for two chains in one dimension and= |v,,|InN form =d = 2 and
m = 3,d = 1. A similar scaling form can also be written for the probability of reunion. A
typical case is shown in figure 1.

The partition function for the chains is generated recursively in their length. For the
two-chain problem, since the randomness is only alongztitérection, only the relative
chain is considered. The centre of mass is a free Gaussian chain. This transformation is
not possible for three chains and we consider the full partition function.

For two chains with pair interaction, the recursion relation is given by

d
Zri+h=e" [Z{Z(r +8, 0+ Z(r — &, D} + pZ(r, r)] /(2d + p) (32)
i=1

with ¢; as unit vectors in théth direction, andr denoting the position vector for the end
point. A weight factorp has been put in for extra weightage of the relative chain. We have
set p equal to 4. The random energy= v,, + A, with equal probability, whenever is
zero. In this relative coordinateZg »(N) = Z(o, N), and Zs »(N) = >, Z(r, N). For
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three chains inl = 1,
Z(x,y,z,t+1) =€ [ > Z(x+i,y+j,z+k,t):|/8 (30)
i,jk==+1

where the Boltzmann factor for the randomness contributes only fery = z, i.e. only
when three chains meet together. All chains start at origin=at0. For the three-chain
case,Zg3(N) =) Z(x,x,x,N), andZs3(N) = ZM_Z Z(x,y,z,N).

The randomness reduces the strength of the interaction. The effective interggtion
determined by

exp(—v,) = [exp(—v, — A) + exp(—v,, + A)]/2 4)

controls the binding—unbinding transition. Since for all the three cases the pure binding—
unbinding transition takes place at zero energy (i.e. Boltzmann factby, the transition
point for a fixedwv,, is given by

v, = IncoshA. . (5)

As a result a bound state can form evendgr> 0. In other words, a thermal unbinding is
possible because randomness produces attractive pockets. The scaling of equation (2) can
be rewritten asV(Zg ,(N)) = F(x), where, for cases A2 and B,= (A — A,)InN for a

givenv,, with A, satisfying equation (5).

We computed the average reunion and survival partition functions, and also the
average probability of reunion where the probability for a given realization is defined as
P(N) = Zrnw(N)/Zs.»(N). The main distinction is that while the first two quantities may
be considered as annealed averaging, the last one is strictly a quenched averaged quantity.
For a given realization, the recursion relation gives exact values (up to the machine precision)
of the partitions functions. An averaging over the disorder is done by considering around
500 samples. The lattice size is chosen such that the average transverse size of a polymer
(~ N1/?) does not exceed it (to avoid boundary effects).
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For a fixed strength of,, we plot, in figure 1, the data for differemt, with the scaled
variables(Zg ,,(N))N as(A — A.)In N. This plot shows a nice data collapse on the pure
curve with A. chosen as per equation (5) for two different valuesvgf It verifies the
exponential divergence of the length scale near the transition. We have also checked similar
data collapse for the other cases and various valueg.of he main inference we draw from
this is that for the average chains in the presence of disorder, the nature of the transition
remains the same as the pure system except for a shift in the critical value. This also serves
as a check on the simulation.

With the above knowledge, we consider a particular vatluand force the system to
be strictly at the transition point of unbinding by choosing approprigte The specific
guantity we calculate is the fluctuation in the reunion partition function or the fluctuation in
the probability of reunion. The raw data for the cumuléA®),. have been plotted withV
for variousA with corresponding,, determined by equation (5). In case there is a disorder
induced transition we expect the following scaling to hold good close to this critical point
Z&?S,

(P%). = N~?°G((A — AT N (6)

where, according to theG prediction of the divergence of the length scale near the transition
point, v, = 1 for cases A2 and B. If we believe in Grand Universality [5], the expogent
should also be the same for these two cases. The plot (®ith. N? versusN (A — AYS)
indeed shows a data collapse for a small valua$f < 0.05 andp = 2. The two cases, A2
and B, for which the pure interaction is marginal, are shown in figures 2 and 3. Numerical
accuracy forbids simulations for very small valuesfand therefore the weak disorder
phase cannot be probed in our simulation.
Figure 4 shows the data collapse for the case of two chairds=al. Since the disorder
is expected to be always marginally relevant, the scaled variables for data collapse, from
RG[5, 6], would beA log N. We obtain a data collapse f¢r= 0.57+0.03. This verifies the
exponential divergence of the length scale for the situation where the disorder is marginal.
To conclude, we have shown that randomly interacting directed polymers undergo a
binding—unbinding transition and, at the critical point, the fluctuation in the reunion partition
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function or the probability of reunion show scaling behaviour with length scale exponents
that agree witlrRG prediction. A finite size scaling form, verified for the pure case, has been
used to study the unbinding transition.. We also obtained the exponents that describe the fluc-
tuation of the second cumulant. This expongiis the same for two chains i2-+1) dimen-

sions and three chains (f+1) dimensions for both of which the pure interaction is marginal.
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